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DOE'’s office of Fossil Energy (FE) has a particular interest in
ultra-low (< 2 ppm NOy) emissions, fuel-flexible turbines for
power generation. Current strategies suggest:

@ Lean premixed systems
(low exhaust temperature Annular array of
results in low NOy)

lean premixed burners

@ Array of alternative fuels
e Hydrogen
e Syngas mixtures (CO + Hy)
o Other...Hydrogen +
hydrocarbons resulting
from gasification processes
(coal, biomass, etc.)

Turbine
Blades
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Low-swirl burner

Low-swirl burner technology developed at LBL is a leading
candidate for meeting requirements of low-emissions turbines

2" Laboratory Burner
-

@ Scalable configuration for atmospheric and high-pressure
@ Stabilized by swirl-induced flow divergence (no pilot)
@ Simple geometry ammenable to simulation
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Standard flame theory, lean CH,4 flames

Characterizing experimental low-swirl flames

CHa (¢=0.8) LSB flame Mie-scattering, CH4

13 cm

OH-PLIF
CH4 (0=0.7)

38 mm

Unburned

CHgy-air flames well-approximated by “standard flame model”
@ Continuous flame separates fuel from products
@ Propagates as flat flame, enhanced by surface wrinkling
@ Simple model is basis of engineering design/analysis

@ Model also used to interpret experimental diagnostics
(e.g. Mie-scattering — flame position) ?l i
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Cellular burning in lean Hy flames

Freely propagating Mie-scattering, H2
H> flames burn in
“cellular” patterns

13 cm

OH-PLIF: H2 (¢=0.37)

@ Highly variable burning, regions of
local flame extinction

@ Temperature, fuel profiles not sensible
“progress variables”

(Thermo-diffusively

unstable flame, @ Standard turbulent flame model is not
photo 1959) applicab|e R
Quantitative analysis requires detailed simulation |
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Relevant scales: turbulent laboratory LSB flame

Spatial Scales
@ Domain L~ 10 cm
@ Flame thickness 67 ~ 1 mm
@ Integral scale ¢; ~ 2 — 6 mm

Velocity Scales
@ Flame speed O(10%) cm/s
@ Mean Flow O(10%) cm/s
@ Acoustic Speed O(10°) cm/s

An ideal solution approach exploits inherent separation of scales
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Solution Approach

Key observations:
@ Open laboratory turbulent flames are low Mach number
@ Regions requiring high-resolution are localized in space

Our approach: Exploit known scale separations
@ Low Mach number formulation
e Eliminate acoustic waves (and the need to resolve them)
o Flow expansion at flame leads to global evolution constraint
@ Adaptive mesh refinement
e Dynamically place fine mesh only where needed
@ Synchronized time-stepping across refinement levels
@ Parallel architectures
e Distributed memory, communication via MPI

e Dynamic load balancing of heterogeneous work associated
with detailed chemistry at flame
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Velocity (m/s)

Vaxial
Vazimuthal
Vradial

LSB Nozzle

Strategy: Rectangular domain. Nozzle outflow
becomes inflow boundary condition

@ Mean flow and turbulent intensities from
measured data

@ Impose synthetic turbulence as a
perturbation to mean inflow (u’, ¢;, from
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Typical profile of simulated LSB H, flame

Temperature

@ Detailed kinetics and differential transport models
(9 species, 27 reactions)

@ Quasi-steady solution, slice taken from vertical midplane
@ Effective resolution 20482, 4% of domain refined
@ Flame thickness §1 ~ 800um (Ax ~ 122um)* .

* Possible through INCITE allocation LTI
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LSB solution - Iog(OH) + vort|C|ty magnltude

~

A
Al reee| (i

Marc Day, CCSE (Berkeley Lab) Lab-scale simulations



LSB solution - Iog(OH)
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Comparisons with mean velocity from LSB experiment

AMR Simulation
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@ Simulation reproduces many salient LSB flame features,
including recirculation zone (vertical velocity shown here)

@ Discrepancies (flame position, velocity) likely due to
(1) boundary data, and (2) lack of sufficient statistics
@ Inlet data scaled from experimental measurements at lower flow rate,
difference suggests Re-dependence of flow field
@ Recent data suggests 30% azimuthal fluctuations in experimental means ,,T,,}‘ A
@ Azimuthally averaged simulation data - poor statistics at core cose N | | |
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Comparisons with OH-PLIF from LSB experiment

Full domain slice
OH (simulation)

25cm

Field of view A

@ Comparison of OH slice with typical OH-PLIF
measurements, global and fine scales

@ Instantaneous large- and fine-scale flame shape/extremely
similar, in terms of shape and variability ~
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Comparisons with freely propagating flame

Isotherms colored by local fuel consumption rate (same scale)

Freely propag'ating

@ On right, flame propagates into quiescent fuel
@ “Natural” cellular structure predominantly spherical

@ Turbulence changes character of wrinkling (becomes more
cylindrical), enhances local variability

@ The “standard model” (thin flame) clearly fails here N
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Detailed flame analysis

Construct flame-centric coordinate system based on T.
Element bounds follow integral curves of VT
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Curvature vs. local burning speed
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@ Local burning enhanced 3-4 x flat flame value, even in flat
regions
@ Considerable flame surface burning at very low levels

Burning mode far outside simple turbulent flame models
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Detailed flame analysis

Example: Use simulation data to find non-local correlations —
i.e. does high values of OH correspond to large “nearby” s.?

Search flame normals for peak
OH. correlated to s;?

Yes! Suggests that OH-PLIF
may be used to quantitatively
measure “local” (nearby)
consumption

0.002 0004  0.006
Peak X(OH) along flame normal
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Methodology to simulate realistic turbulent lab-scale flames
@ Detailed chemistry and transport (no “turbulence” models)
@ Efficient AMR algorithm exploits scale separations

@ Flame detail supplements experimental data, validates
interpretation of diagnostics

Future work

LSB Emissions Data
3 @ Detailed kinetics to include emissions
g NOX_";"L"Z” ‘”Cd'?ases chemistry — investigate experimentally
ST T2 obsesrved NOy “floor” (see figure)
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